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4-Hydroxyenones3) are important building blocks for asym-
metric organic synthesisEnantioselective synthesis of this class
of molecules generally relies on metal-catalyzed biocatalytié
desymmetrization of diols2) or their derivatives (eq 1). Given

that these diols are most commonly prepared by photooxygenation

of 1,3-dienes, we envisioned desymmetrization of the intermediate
meseendoperoxide ) as a more direct means for the overall
asymmetric 1,4-dioxygenation of cyclic 1,3-dierfed/hile enan-
tioselective transforms of endoperoxides are Pare, anticipated

the possibility of achieving a desymmetrization of bicyclic endo-
peroxides to enantioenricheg-hydroxyenones via chiral base-
catalyzed Kornblum DeLaMare rearrangemént.
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On the basis of the observation that the Kornblum DeLaMare
rearrangement may be promoted by trialkylamines (i.eNEwe

M
Kornblum-DelLaMare
rearrangement

H

examined a series of chiral nonracemic amines as catalysts for this

reaction. While the majority of amines tested promoted very little
rearrangement and poor enantioinduction (for example, 10 mol %
(—)-sparteine gavé in 90% yield and<5% ee after 3 days)the

Table 1. Catalyst Optimization
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entry catalyst solvent time % yield % ee
1 QD 6) EtOAC 12h 51 10
2 QD-Ac (7) EtOAC 4d 50 14
3 (DHQDYAQN (8) EtOAc 16 h 67 72
4 (DHQD),PHAL (9) EtOAC 12h 38 32
5 (10 EtOAc 8h 89 28
6 deMeQDACc (1) EtOAc 16 h 99 929
7 deMeQDACc (1) CHXCl, 6h 99 99
8 deMeQD-9-PHENZX2) CHXCl, 6h 99 99
9 (deMeDHQD)AQN (13) CHXCl, 6h 99 97
10 deMeQAc 14) CHXCl, 6h 99 —-97

QD (6)R'=H, R?=Me

QD-Ac (7) R' = Ac, R? = Me
deMeQDAc (11) R' = Ac, R2=H
deMeQD-9-PHEN (12) R' = 9-phenanthryl, R = H
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(13) R = deMeDHQD

use of cinchona alkaloids as catalysts resulted in a dramatic increase

in both reactivity and enantioselectivity (Table 1). Although
monomeric cinchona alkaloids providgavith modest enantiomeric
excess (entries 1,2), dimeric cinchona catalyst (DHQQN (8)
catalyzed the desymmetrizaton df with an improvement in
enantioselectivity to 72% ee (entry 3). Disappointingly, further
examination of other dimeric catalyst systems proved unfruitful (i.e.,
entry 4). Inspired by recent repoftsye tested bifunctional cinchona
alkaloids bearing a'énydroxy group on the quinoline ring. To our
delight, demethylated cataly4fl provided a notable increase in
enantioselectivity, affording in quantitative yield and 99% ee
(compare entries 2 and 6). Additionally, switching the solvent from
ethyl acetate to methylene chloride allowed for the reaction to reach
completion in ony 6 h (entry 7)° Moreover, treatment of with a
sub-stoichiometric amount of pseudoenantiomeric quinine-derived
catalyst (deMeQAc 14)) provided ent5 with similar enantiose-
lectivity (entry 10). In contrast to our earlier findings, dimeric
catalystl3 provided the product in slightly lower enantioselectivity
than monomeric versiofil (compare entries 8 and 9).

Under the optimized reaction conditions, 5 moll%catalyzed
the conversion of endoperoxideo y-hydroxyenoné in 97% yield
and 99% ee afte6 h atroom temperature (Table 2, entry 1).
Furthermore, catalysi1l was quantitatively recovered from the
reaction mixture. Cinchona alkaloid. catalyzed the transformation
of substituted dioxabicyclo[4.2.2]decehB with equal efficiency,
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affording y-hydroxyenonel6 in quantitative yield and 99% ee
(entry 2).

Seven-membered ringhydroxyenones are available in excellent
yield and enantioselectivity from desymmetrization of substituted
dioxabicyclo[3.2.2]nonenes catalyzed by 5 moll%entries 3-5).
Dioxabicyclo[2.2.2]octenes are also viable substrates for the base-
catalyzed enantioselective reaction. Th28was converted t@4
with concomitant creation of three consecutive chiral centers in
96% ee (entry 9). Importantly, potentially base lalfikaydroxy-,
siloxy-, and alkoxy- leaving groups remained stable under the mild
reaction conditions (entries2, 9), although some epimerization
of thea-stereocenter is observed. Disappointingly, steric reduction
of substituents (i.e., entry 8, R H or entry 9, R= OMOM) led
to a corresponding reduction in enantioenrichment of the products.
The absolute stereochemistry of thdrydroxyenones derived from
the asymmetric Kornblum DelLaMare rearrangement was assigned
by comparison of optical rotation with known eno2&? and the
acetate derivatives @2 and36.1° The absolute stereochemistry of
the remaining of enones was assigned by analogy.

In analogy to the tertiary amine-promoted rearrangement of
endoperoxide& we propose that the cinchona alkaloid catalyst
functions as a base in an enantioselecEeclimination!213 The
increased enantioselectivity (and rate of reactivity) observed with
the demethylated catalysts supports dudlrBted base/Brusted
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